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The Distinct Element Method - Application to
Structures in Jointed Rock

Joseph Morris, Lew Glenn, Steve Blair, and Francois Heuzé

Geophysics and Global Security Division, Lawrence Livermore National
Laboratory, Livermore, U.S.A.

Abstract. The Distinct Element Method (DEM) is a meshfree method with ap-
plications to rock mechanics, mining sciences, simulations of nuclear repositories,
and the stability of underground structures.

Continuum mesh-based methods have been applied successfully to many prob-
lems in geophysics. Even if the geology includes fractures and faults, when suf-
ficiently large length scales are considered a continuum approximation may be
sufficient. However, a large class of problems exist where individual rock joints
must be taken into account. This includes problems where the structures of inter-
est have sizes comparable with the block size. In addition, it is possible that while
the structure may experience loads which do no measurable damage to individual
blocks, some joints may fail. This may launch smaller blocks as dangerous pro-
jectiles or even cause total failure of a tunnel. Traditional grid-based continuum
approaches are wholly unsuited to this class of problem. It is possible to introduce
discontinuities or slide lines into existing grid-based methods, however, such limited
approaches can break down when new contacts form between blocks.

The distinct element method (DEM) is an alternative, meshfree approach. The
DEM can directly approximate the block structure of the jointed rock using arbi-
trary polyhedra. Using this approach, preexisting joints are readily incorporated
into the DEM model. In addition, the method detects all new contacts between
blocks resulting from relative block motion.

We will describe the background of the DEM and review previous application
of the DEM to geophysical problems. Finally we present preliminary results from
a investigation into the stability of underground structures subjected to dynamic
loading.

1 Numerical Simulation of Discontinua

A wide range of applications involve materials or systems which are discon-
tinuous at some level. While some systems may be intrinsically discontinuous
(such as items of furniture in a room) other discontinuous systems are well
approximated by a continuum. Soils, for example, are clearly discontinuous
at the microscale, however, in practice, the behavior of soils are well repre-
sented by continuum methods. This approximation is possible because the
scale of the objects of interest (dams, walls, etc.) is large compared with a
typical soil grain. There are also applications where a discontinuous system
may be approximated better by a continuum or discontiuum depending upon
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the specific information sought. For example, continuum mesh-based meth-
ods have been applied successfully to many problems in geophysics. Even
if the geology includes fractures and faults, when sufficiently large length
scales are considered a continuum approximation may be sufficient. However,
a large class of problems exist where individual rock joints must be taken
into account. This includes problems where the structures of interest have
sizes comparable with the block size. In addition, it is possible that while the
structure may experience loads which do no measurable damage to individual
blocks, some joints may fail. A continuum, mesh-bashed treatment of such
systems is usually inappropriate.

2 Discrete Element Methods

!
Cundall and Hart, 1992 review many of numerical techniques that have been
developed to simulate the behavior of discontinuous systems. Cundall and Hart, 1992
define a discrete element method to have the following properties:

— Allows finite displacements and rotations of discrete bodies, including
complete detachment
— Recognizes new contacts automatically as the calculation progresses.

Cundall and Hart, 1992 further define four basic classes of discrete element
methods:

— Distinct element methods (DEM)
— Modal methods

— Discontinuous deformation analysis
— Momentum-exchange methods

Distinct element methods (DEM) use an explicit scheme to evolve the
equations of motion of discrete bodies directly. The bodies may be rigid
or deformable (by subdivision into elements). Early approaches employed
rigid disks or spheres with compliant contacts (Cundall and Strack, 1979,
Cleary, 1991). Cundall, 1980, Cundall and Hart, 1985 and Walton, 1980 de-
veloped 2-dimensional DEMs which employed arbitrary polygons. More re-
cently, fully three-dimensional DEMs with rigid or deformable polyhedral
blocks with compliant contacts were developed (Cundall, 1988, Hart el al., 1988),
When using the DEM, contacts are always deformable and can employ de-
tailed joint constitutive models which mimic observed fracture properties
(normal stiffness, shear stiffness, dilation, cohesion, etc.). Quasi-static analy-
sis can be performed by relaxation of the body motion. The DEM is consid-
ered in more detail in the following section.

Modal methods (Williams et al., 1985,Williams and Mustoe, 1987) are sim-
ilar to the distinct element method in the case of rigid blocks. However, for
deformable bodies, modal superposition is used. This method appears to be
better suited for loosely-packed discontinua. In dynamic simulation of dense
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packings, eigenmodes are not revised to account for additional contact con-
straints.

In contrast with the Distinct element method, Discontinuous deformation
analysis (Shi, 1988 and Shi and Goodman, 1988) assumes contacts are rigid.
The bodies may be rigid or deformable and the condition of no-penetration
is achieved by an iterative scheme. Deformability is achieved through super-
position of strain modes.

Momentum-Exchange methods (Hahn, 1988) assume both the contacts
and bodies to be rigid. Collisions are modeled by an instantaneous exchange
of momentum between contacting bodies. It is possible to include friction
sliding in the contact model.

3 Distinct Element Method

The Distinct element method (DEM) can directly approximate the block
structure of the jointed rock using arbitrary polyhedra. Using this approach,
preexisting joints are readily incorporated into the DEM model. By nature,
the Distinct element method can readily handle large deformation on the
joints. In addition, the method detects all new contacts between blocks re-
sulting from relative block motion. The Lagrangian nature of the DEM sim-
plifies tracking of material properties as blocks of material move. It is also
possible to guarantee exact conservation of linear and angular momentum.
Furthermore, by using an explicit integration scheme, the joint models can
be very flexible. In particular, the joint constitutive model can incorporate
experimentally observed effects such as, cohesion, joint dilation, and friction
angle.

The DEM has been applied to a wide range of problems in geomechan-
ics. For example, Antonellini and Pollard, 1995 simulated the formation of
shear bands in sandstone using the DEM. Morgan, 1999a,b applied the DEM
to the mechanics of granular shear zones. Heuzé et al., 1993 used the DEM
to analyze explosions in hard rock. Sanderson and Zhang, 1998 used a two-
dimensional distinct element method to investigate the evolution of damage
zones and fluid flow in fracture networks and around faults. Cundall, 2001
reviews the application of the DEM to simulation of granular material and
rock.

The DEM has also been coupled to other techniques in order to exploit
the relative advantages (accuracy vs. speed) of each in different regions of
the computational domain. For example, Lorig et al., 1986 used a hybrid
model that incorporated both distinct element and boundary element meth-
ods (BEM) to analyze the behavior of jointed rock. The DEM was used to sim-
ulate the near-field behavior in detail, while the BEM provided boundary con-
ditions that simulated the far-field rock mass. Pan and Reed, 1991 presented
details of a coupled distinct element-finite element method that was success-
fully applied to several field-scale test problems. Mori, Otsu, and Osakada, 1997
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used a viscoplastic finite-element method to generate boundary conditions
for a DEM simulation of grain alignment in the ”"mushy-state” forging of
magnets. In addition, the DEM has been applied to simulate the transient
dynamics of fracturing solids. Munjiza, Owen, and Bicanic, 1995 developed a
coupled finite discrete-element technique where deformable discrete elements
were allowed to separate into two or more elements once a critical stress (or
strain) state was reached. Sawamoto et al., 1998 used a simple DEM with
cylindrical elements to assess local damage to reinforced concrete.

The flexible nature of the DEM presents a few challenges. The algorithm
for detecting an classifying contacts must be both robust and efficient. Real-
istic three-dimensional fracture networks require a great many DEM blocks
and concomitant computational expense. These two issues are discussed in
the following sections.

3.1 Detecting Contacts

As the distinct element blocks move, initial contacts between blocks may dis-
appear, and new contacts form. The DEM code must rapidly determine if two
blocks are interacting. In addition, the code must be able to classify the type
of contact so an appropriate constitutive model may be applied. For example,
the behavior of a vertex pushing into a face may differ qualitatively from two
faces in contact. The method used should be able to identify all conceivable
cases of two block interaction. In particular, near degenerate cases, such as
two faces barely overlapping, should not cause the algorithm to fail.

One approach is to exhaustively consider the arrangement of two blocks
by looking at each pair of vertices. If the blocks have m and n vertices
each, this direct approach requires order mn operations to determine if two
blocks interact. In addition, the algorithm in three dimensions is very complex
and requires many different cases to be identified and treated appropriately.
Ghaboussi et al., 1993 proposed training neural networks to perform contact
detection. While neural networks are relatively simple to implement they
require extensive training.

The concept of a “Common-Plane” (Cundall, 1988) provides an alterna-
tive approach to reduce the complexity of the contact detection algorithm.
Intuitively, the approach can be thought of as introducing a rigid, mass-
less plate between candidate interacting pairs of convex polyhedra (see Fig-
ure 1). The algorithm proceeds by iterating the position and orientation of
this “common-plane” to maximize the distance between it and each block.
If the blocks are overlapping, the common-plane will orient to minimize the
penetration of the blocks through the common-plane. Figure 2 shows some
examples of how the common-plane is oriented for two-dimensional polygonal
elements. Of particular interest is the treatment of non-convex blocks. In this
case the block must be subdivided into convex polyhedra and common-planes
are generated for each pair of convex polyhedra belonging to separate blocks.
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The common-plane can be used to simplify contact classification. Cundall, 1988

suggest classifying the contact type by simply counting up the number of in-
teracting vertices on each block. For example, two penetrating vertices from
one block and three from the other would indicate an edge interacting with
a face. In addition, the common-plane simplifies the application of joint con-
stitutive models. For example, the orientation of the common-plane can be
used to determine the normal of the contact and dictates a co-ordinate system
which can be used by joint models.

Common-—plane

Plane moves to maximize
separation

Blocks brought together

Fig. 1. The “common-plane” can be thought of as a rigid, massless plate between
candidate interacting pairs of convex polyhedra. The algorithm proceeds by iterat-
ing the position and orientation of this “common-plane” to maximize the distance
between it and each block.

The iterative procedure of the common-plane approach is very easy to
implement and can be very efficient for many classes of problem. Typically,
the common-plane orientation from the previous time-step provides a good
initial guess of the current orientation. Provided the appropriate normal of
the contact has not changed much between time steps, the iterative procedure
converges rapidly.

3.2 Parallelization of DEM

The number of distinct elements used in a single simulation is limited by
the available computational power. Current work stations can handle simula-
tions involving of order one hundred thousand elements. Several authors have
extended the capability of the DEM by utilizing high performance comput-
ing (HPC) systems. Cleary and Sawley, 1999 and Sawley and Cleary, 1999
have developed a portable parallel implementation of the DEM using stan-
dard message passing libraries. Horner et al., 1998 and Carrillo et al., 1999
recently implemented a fully interactive large-scale soil simulation involving
hundreds of thousands of elements. Dowding et al., 1999 developed a parallel
DEM to calculate the dynamic response of a cavern in a jointed rock mass.
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Fig. 2. Some examples of how the common-plane is oriented for two-dimensional
polygonal elements. The last example shows the treatment of non-convex blocks.
The block is subdivided into convex polyhedra and a common-plane is generated
for each pair of convex polyhedra belonging to separate blocks.

They compared SIMD (single instruction, multiple data) performance with
MIMD (multiple instruction, multiple data) and found MIMD processing
to provide the best overall parallelization. Ghaboussi et al., 1993 proposed
an alternative parallelization scheme on SIMD architectures by using paral-
lelized neural networks to perform the contact detection. However, to date
this approach does not appear to have been implemented.

Our approach was to parallelize through spatial domain decomposition.
The entire problem domain is divided into nearest neighbor cells which are
used to identify neighboring blocks which are potential contacts. Each proces-
sor is assigned a contiguous region of nearest neighbor cells. Communication
occurs via message passing (MPI) at the start of each time step. All blocks
within neighboring cells are copied between processors. Calculations are per-
formed on blocks which do not directly interact with neighboring processors
while communication occurs. Figure 3 shows the performance of our parallel
code for increasing problem sizes and increasing numbers of processors. Du-
plicate calculations are performed on each processor in the region of overlap
where blocks are copied back and forth. Consequently, speedup is best for
larger problems where the region of overlap between processors is a smaller
fraction of the total work performed.
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Fig. 3. Performance of our parallel code for increasing problem sizes and increasing
numbers of processors. Speedup is best for larger problems where the region of
overlap between processors is a smaller fraction of the total work performed.

4 Attack/Defense of Buried Facilities

The particular application of interest is the prediction of damage to hard
and deeply buried targets (HDBT), such as command and control centers,
or chemical, biological, and nuclear weapons facilities. Figure 4 depicts three
scenarios for attacking an HDBT:

1. Direct blast into the entrance passageway.
2. Collapsing a critical access point with a single explosion.
3. Several blasts to a point well above the facility.

To predict damage inflicted upon hard and deeply buried targets, several
coupled regions must be modeled (see Figure 5). In the immediate vicinity
of the blast, the ground shock is sufficient to rubblize the rock, material
strength is irrelevant, and the material behavior is hydrodynamic. Deeper
into rock, material strength becomes important. Finally, in the vicinity of
the target area, the detailed structure of the rock mass and the facility itself
are important.

4.1 Continuum Approach

An estimate of peak velocity, displacement, and stress experienced at a given
depth from an explosion can be used as an estimator of damage done to
deeply buried tunnels. Typically, the depth of the tunnel is large compared
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Surface Multi—burst -

Single burst

Bomb-in—Portal

Fig. 4. Three possible scenarios for attacking a hard and deeply buried target: (1)
direct blast into the entrance passageway, (2) collapsing a critical access point with
a single explosion, or (3) several blasts to a point well above the facility.
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Fig. 5. To predict damage inflicted upon hard and deeply buried targets, several
coupled regions must be modeled. In the immediate vicinity of the blast, the ground
shock is sufficient to rubblize the rock, material strength is irrelevant, and the
material behavior is hydrodynamic. Deeper into rock, material strength becomes
important. Finally, in the vicinity of the target area, the detailed structure of the
rock mass and the facility itself are important.
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with the size of the blocks making up the rock, and continuum approaches
have been very successful in reproducing measured attenuation rates from
the source. Lomov et al., 2001 present an approach for accurately modeling
projectile penetration and explosions in rock media. Using an Eulerian code
(GEODYN) Lomov et al., 2001 fit a constitutive model (Rubin et al., 2000)
to peak velocity and displacement attenuation data from tamped (buried)
nuclear explosions in hard rock conducted in the U. S. and in the Hoggar
massif (Algeria). The model was then validated with tamped data from nu-
clear explosions at Degelen Mountain. The predicted attenuation rates for
peak velocity and displacement were also in good agreement with those mea-
sured in 500-ton surface HE shots at Degelen Mountain. This continuum

100 y
100 Nfodel Fit ™. o
Vpk *
(mv's)
10 -/

-1.7587

v, =20176X 10° R

HOGGAR (- 1333

1 10 100 "1000
R (m/kt 13)

Fig. 6. Constitutive Model fit to ensemble of nuclear tamped explosion (peak ve-
locity /displacement) data

treatment demonstrates that peak velocity and displacement from tamped
explosions in granitic rocks can be predicted to within a factor of two over
ten orders of magnitude in yield (see Fig. 6). However, this approach does
not provide insight into the details of the damage done to underground struc-
tures. Traditionally a rock mass is deemed to fail when the strength of the
material is exceeded. Failed rock is no longer able to withstand load without
undergoing inelastic strains. However, hard rock strength increases markedly
with increased pressure and yet it has been observed that functional damage
or even complete tunnel collapse can occur at stress levels far below those
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previously thought to be required. The following section investigates this
phenomenon.

4.2 Results from Underground Explosions

Recent experiments have suggested that repeated loading of hard and deeply
buried targets by, for example, multiple bombing runs may cause functional
damage or even complete tunnel collapse at stress levels far below those pre-
viously thought to be required. Similar behavior was also observed at the
Nevada Test Site during nuclear tests. In this section we discuss some obser-
vations of tunnels in Granite and Tuff from the Nevada Test Site, subjected
to various peak stresses. The Pile Driver and Midas Myth tests were per-
formed in granite and tuff respectively. The tunnel sections varied widely in
their degree of rock mass reinforcement and tunnel lining or support. In the
cases presented here, it was reported that no damage had taken place in the
granite material where the free field stress had not exceeded 700 MPa. Some
sections withstood free-field stresses in excess of 200 MPa, whereas some oth-
ers were damaged at less than 100 MPa. Well engineered tunnel designs can
withstand much higher loads than unsupported or unreinforced sections.

Figure 7 compares two different sized tunnel sections within granite, rein-
forced with concrete. Under approximately the same loading conditions, the
larger construction failed. Figure 8 compares two tunnel segments in granite
with rock bolt and wiremesh reinforcement. Both were subjected to approx-
imately 100 MPa peak stress and the tunnel segment orientated side-on to
the source failed. Figure 9 shows the collapse of two excavations in tuff which
were subjected to loads well below the strength of tuff. Both structures failed,
and the discrete nature of the rock mass is evident.

In all these cases, the peak stress experienced by the structure was well be-
low the strength of the intact rock, and yet many of these structures failed.
The mechanism for this damage is thought to be key-block displacement.
To comprehend how this works it must first be understood that the struc-
ture surrounding an underground tunnel does not normally consist of ho-
mogeneous rock. Instead the rock is typically jointed via naturally occurring
faults or cracks. The crack density may be enhanced by the very process that
forms the tunnel, e.g., drill and blast. The resulting blocks are held in place
by frictional forces and/or cementation contacts. When the ensemble block
structure is subject to intense impulsive loading it is possible that one or a
few (key) blocks on the tunnel wall can be displaced enough to release the
equilibrium state on a large section of blocks. The key block(s) then can fall
into the open tunnel and the space previously occupied by these blocks be-
comes available for occupation by adjacent blocks; this process can lead to
catastrophic collapse of the entire roof of the tunnel. Even if this does not
occur, the structure can be seriously weakened and subsequent loading may
cause collapse at much lower loading.
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These results also indicate that engineered structures play a key role.
Furthermore, the orientation, spacing, and shear strength of geologic discon-
tinuities (joints) control the behavior of a tunnel of a given diameter. Hard
rock joints dilate strongly before reaching peak strength, after which the
strength drops rapidly with increased loading. As a result of the controlling
effects of the joints it is not possible to estimation tunnel response via contin-
uum based analysis. While it is possible to augment continuum approaches
to handle fractures and faults by introducing discontinuities or slide lines into
existing grid-based methods, this approach becomes increasingly difficult if
the connectivity of the block structures changes.

@ | T )

Fig.7. (a) A 7 ft inner diameter tunne! in concrete inside a backpacked 13 ft
diameter excavation within granite. Subjected to over 200 MPa, the tunnel suf-
fered minimal damage. (b) A similar, but larger construction (12’x7’ backpacked,
reinforced concrete intersecting with a 26.7°x16’ rock excavation) failed under com-
parable load.

5 Application of DEM to Structures in Hard Rock

5.1 Wave Propagation

In this section we demonstrate the ability of the DEM to solve wave propa-
gation problems before using the DEM to simulate the response of realistic
tunnel geometries in jointed rock. Figure 10 shows idealized pulse, similar to
that experienced at some depth below a surface explosion. This pulse was
driven into a regular lattice of cubic DEM blocks of side length 1 m, with
normal stiffness of 3 x 10° Pa/m and density of 2 x 10%® kg/m?. The pulse
is also shown after it has been transmitted through 200 1 m DEM blocks. In
this case, the joint model was elastic, so no energy is lost and the pulse peak
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Fig. 8. (a) A 16-ft diameter tunnel with no liner, with rock bolts and wiremesh
reinforcing within granite. Subjected to over 100 MPa end-on loading, the tunnel
suffered essentially no damage. (b) The same basic design, oriented with side-on
loading failed under the same load. The failed block structure can be discerned
through the wire mesh.

Fig. 9. (a) An excavation, reinforced with wire within tuff, collapsed at low stress.
(b) An excavation, reinforced with rockbolts within tuff, collapsed at low stress.
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is propagated with negligible attenuation. The expected wave speed is given
by:

where [ is the length of each block in the propagation direction, p is the block
density, and K, is the normal stiffness of the contacts. The simulation exhibits
a wave speed of 3820 m/s which compares well with the analytic result of
3873 m/s. Note that while this test assumed elastic joint models, hysteretic
contact forces have been considered by other authors (Heuzé et al., 1993) and
will be incorporated into our code in the near future.

05

— depth Om

s --= depth 199m -
¥ ]
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Fig.10. A idealized typical velocity profile is well propagated through a stack of
200 1 m DEM blocks.

5.2 Simulations of Tunnels

Finally we present preliminary results from a investigation into the stabil-
ity of underground structures subjected to dynamic loading. The effects of
explosions on underground structures were studied in two dimensions by
Heuzé et al., 1993. Figure 11 shows a tunnel in jointed rock. The average
block size is approximately 1 m. The jointed rock mass is confined by 7.5 MPa
of lateral and vertical stress. The upper boundary was moved with the driving
pulse shown in Fig. 10.

The simulation predicts that a substantial portion of the tunnel roof will
collapse, making the tunnel unusable. Although this simulation is preliminary,
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it demonstrates the capabilities of the DEM with this kind of problem. The
joint structure is realistic, with non-orthogonal joint planes. Blocks are free
to move and make new contacts with other blocks in the simulation. After
further validation, this simulation capability will be applied to a parameter
study of the stability of underground structures.

Fig. 11. A preliminary simulation of a tunnel in jointed rock subjected to the pulse
shown in Fig. 10. The simulation predicts that a substantial portion of the tunnel
roof will collapse, making the tunnel unusable.

6 Discussion

We have seen that continuum approaches can provide some details of po-
tential damage to underground structures. Peak velocities and displacements
are well predicted to within a factor of two over ten orders of magnitude
in yield. However, this information along cannot provide complete damage
estimates. In particular, it has been observed that substantial damage, or
total collapse of a tunnel can occur at stresses well below the strength of the
rock. The mechanism for this damage is thought to be key-block displace-
ment. Realistic simulation of failure Distinct element methods can simulate
collapse of tunnels for realistic fracture set geometry including the effects of
block motion.

In practice, however, we only have limited knowledge of local fault zones.
To provide bounds on the response, we must study a range of probable
fault geometries. That is, we must perform stochastic analysis with many
realizations required to obtain adequate statistics to bound results. Current
three-dimensional scalar codes take days to simulate the dynamic loading of
structures containing ~ 10* — 10° distinct elements. We have presented our
approach to parallelization of the DEM by employing domain decomposition.

The common-plane approach to contact detection is both efficient and
easy to implement. However, under some circumstances the method of Cundall, 1988
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gives misleading contact classifications. The contact type is based upon count-
ing the number of penetrating vertices. Thus, it is possible that a contact
which would be better approximated by two interpenetrating faces will be
misclassified as an edge to face contact. We will be investigating more ac-
curate contact detection algorithms which build on the common-plane ap-
proach. Other future development of our DEM code will include coupling
with other codes and the inclusion of structural elements. In addition, more
advanced joint models including hysteresis (Heuzé et al., 1993) will be incor-
porated into our code in the near future.

Acknowledgement This work was performed under the auspices of the U.S.
Department of Energy by the University of California, Lawrence Livermore
National Laboratory under Contract No. W-7405-Eng-48.
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